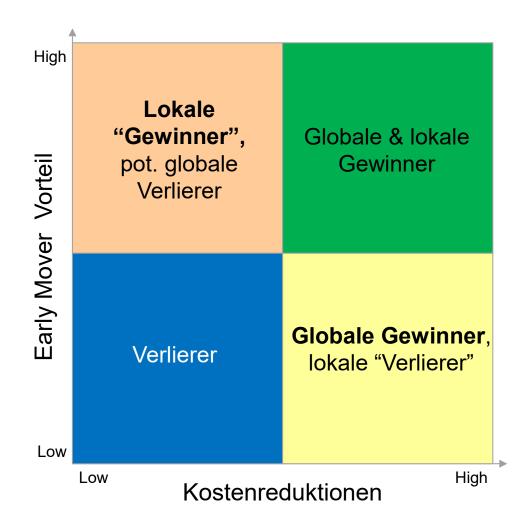


- Welche Technologien fördern?
 - Kostendynamik: Lernraten
 - Heimatmarkt/Early Mover Vorteile
 - Also welche Technologien (nicht)?
- Wie Gewinner-Technologien gezielt fördern?



Zwei Zielfunktionen von Energie-Innovationspolitik

"picking winners avoiding losers"

Was zeichnet Gewinner aus?

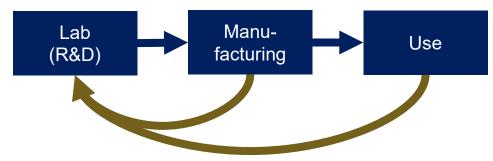
- globale Wettbewerbsfähigkeit:
 Technologien die kostengünstig werden relativ zu "braunen" und anderen "grünen"
 Technologien
- Iokale Industriepolitik: Technologien mit einem Early Mover Vorteil

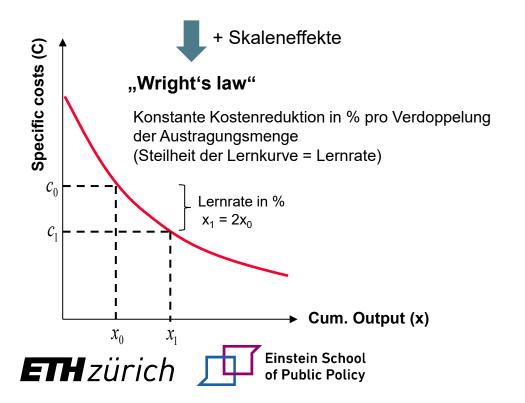
Emergente Literatur zu Technologie-Unterschieden

Technologie-inhärente Eigenschaften die zu unterschiedlichen Innovationsmustern führen:

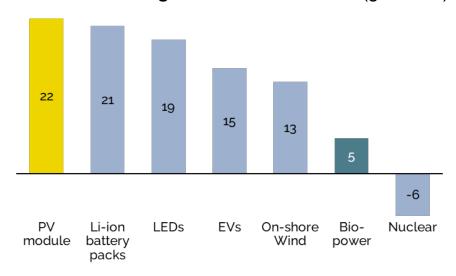
- Design-Komplexität
- Granularität (Produktgröße, Modularität)
- Anpassungsbedarf
- Integrierte Massenfertigung

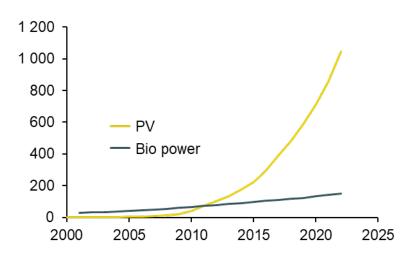
Diese Unterschiede wirken auf die beiden Zielfunktionen: Kostendynamik und Early-mover/Heimatmarktvorteil Beispiele:


- Welche Technologien fördern?
 - Kostendynamik: Lernraten
 - Heimatmarkt/Early Mover Vorteile
 - Also welche Technologien (nicht)?
- Wie Gewinner-Technologien gezielt fördern?



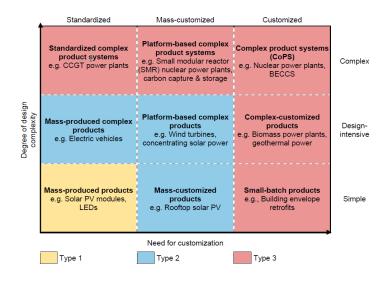
Lernkurven sind essentiell – aber unterschiedlich steil

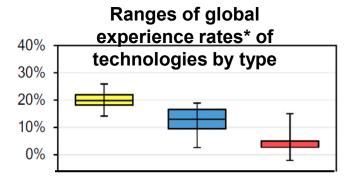

Innovation als nicht-linearer Prozess


Knowledge feedbacks from Source: Schmidt 2020 (iScience); experience gained during manufacturing & use

Durchschnittliche globale Lernraten in % (gerundet)

Ausbreitung von Technologien über Zeit (GW)

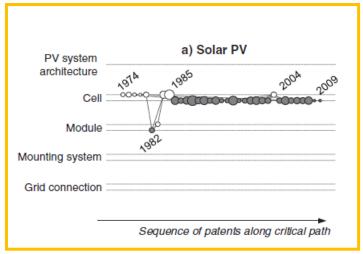

Technologieeigenschaften und Lernraten

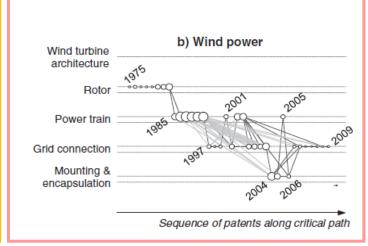

Charakteristika von "Schnell-lernenden" Technologien:

- Geringe Design-Komplexität
- Geringer Anpassungsbedarf (von einer Nutzungsumgebung zur anderen)
- Integrierte *Massenfertigung* (typischerweise kleinere Produktgrößen)

Siehe:

Sources: Malhotra & Schmidt 2020 (Joule) Kaack et al. mimeo, Merrow 1989, Wilson et al. 2020 (Science)


- Welche Technologien fördern?
 - Kostendynamik: Lernraten
 - Heimatmarkt/Early Mover Vorteile
 - Also welche Technologien (nicht)?
- Wie Gewinner-Technologien gezielt fördern?



Unterschiedliche Lernmuster und Wettbewerbseffekte

Unterschiede in Innovationmustern (Beispiel Patentnetzwerke)

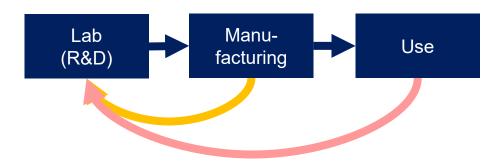
Legend:

Patent relating to product innovation (size ~ node weight)

Patent relating to proces innovation

Citation ≤ 5 year lag (width ~ link weight)Citation > 5 year lag

Herstellungs-Komplexität


- Learning by manufacturing (doing)
- Sehr geringer Wert von Nutzererfahrung
- Last-mover Vorteil

Design-Komplexität

- Learning by using (Nutzererfahrung)
- Early-mover/Heimatmarkt Vorteil
- Geringe Relevanz von Herstellung

Source: Huenteler, Schmidt et al. 2016 (TFSC)

Innovation als nicht-linearer Prozess

Knowledge feedbacks from experience gained during manufacturing & use

Source: Schmidt 2020 (iScience);

3 Entscheidende Technologieeigenschaften und ihre Effekte auf die Zielfunktionen

Farly mover

Technologie Charakteristika

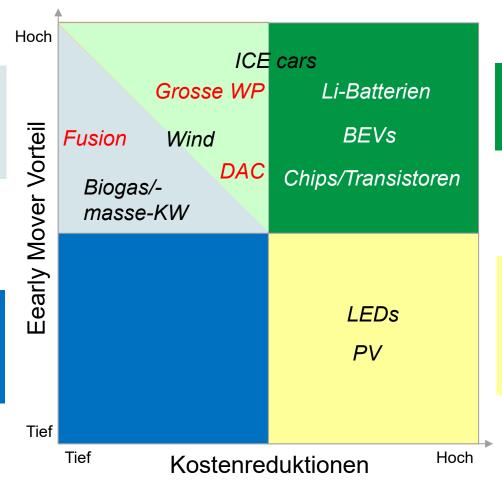
	Kostendynamik	Heimatmarkt Vorteil
Design- Komplexität ↑	• Lernrate ↓	Learning by using ↑
Integrierte Massenfertigung ↑	Lernrate ↑	Learning by manufacturing ↑
Anpassungs- bedarf ↑	• Globale Lernrate ↓	• Spillovers \

hoch

- Welche Technologien fördern?
 - Kostendynamik: Lernraten
 - Heimatmarkt/Early Mover Vorteile
 - Also welche Technologien (nicht)?
- Wie Gewinner-Technologien gezielt fördern?

Wer ist also Gewinner/Verlierer?

Lokale & Globale Gewinner (II):


Hohe Design Komplexität, keine integrierte Massenfertigung; aber keine Alternativen mit höheren Lernraten

Lokale Gewinner, globale Verlierer:

Hohe Design Komplexität, keine integrierte Massenfertigung (geringe/mittlere Standardisierung)

Verlierer:

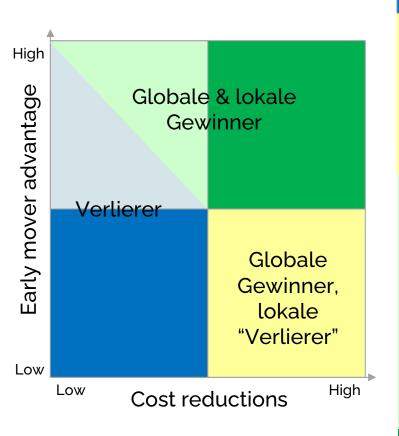
Simple Produkte nicht massengefertigt (z.B. weil nicht standardisiert)

Globale & lokale Gewinner (I):

Design Komplexität + Standardisierung + Massenfertigung

Globale Gewinner, lokale Verlierer:

Geringe Komplexität Standardisierung Massenfertigung



- Welche Technologien fördern?
- Wie Gewinner-Technologien gezielt fördern?

Sehr unterschiedliche Förderung

Verlierer/lokale vermeintliche Gewinnner (blau): vermeiden

Globale Gewinner/lokale Verlierer:

- Fokus aus Klimasicht
- Industriepolitisch: nur auf Early-Mover Vorteile von Produktionsequipment-Herstellern setzen Early-mover Nachteil durch Technologie-Clubs adressieren

Globale & lokale Gewinner (grün):

- Langsam lernende Technologien (potentielle globale Verlierer, hellgrün) ausschließen ob schneller lernende Alternativen vorhanden (z.B. nicht-MIB Speicher)
 - Wenn ja: vermeiden
 - Wenn nicht: stabiler Heimatmarkt, Interaktion von Nutzern und Herstellern, Vereinfachung von Regulation zur Verringerung von Anpassungsbedarf
- Schnell lernende Technologien mit Komplexität:
 - Heimatmarkt und Exportförderung, Interaktion Hersteller, produktions- & produktorientierte Forschung (z.B. FHG)

Vielen dank für Ihre Aufmerksamkeit!

https://epg.ethz.ch

https://www.linkedin.com/in/tobias-schmidt-811622146/

https://einstein-school.ethz.ch

https://www.linkedin.com/company/eth-einsteinschool

Research presented today has received funding from the Swiss Federation and the European Union's Horizon research and innovation program

